3.57 \(\int \sec (c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=51 \[ \frac{(2 A+C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{B \tan (c+d x)}{d}+\frac{C \tan (c+d x) \sec (c+d x)}{2 d} \]

[Out]

((2*A + C)*ArcTanh[Sin[c + d*x]])/(2*d) + (B*Tan[c + d*x])/d + (C*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0510769, antiderivative size = 51, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {4047, 3767, 8, 4046, 3770} \[ \frac{(2 A+C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{B \tan (c+d x)}{d}+\frac{C \tan (c+d x) \sec (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

((2*A + C)*ArcTanh[Sin[c + d*x]])/(2*d) + (B*Tan[c + d*x])/d + (C*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=B \int \sec ^2(c+d x) \, dx+\int \sec (c+d x) \left (A+C \sec ^2(c+d x)\right ) \, dx\\ &=\frac{C \sec (c+d x) \tan (c+d x)}{2 d}+\frac{1}{2} (2 A+C) \int \sec (c+d x) \, dx-\frac{B \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=\frac{(2 A+C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{B \tan (c+d x)}{d}+\frac{C \sec (c+d x) \tan (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.0153093, size = 59, normalized size = 1.16 \[ \frac{A \tanh ^{-1}(\sin (c+d x))}{d}+\frac{B \tan (c+d x)}{d}+\frac{C \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{C \tan (c+d x) \sec (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(A*ArcTanh[Sin[c + d*x]])/d + (C*ArcTanh[Sin[c + d*x]])/(2*d) + (B*Tan[c + d*x])/d + (C*Sec[c + d*x]*Tan[c + d
*x])/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.028, size = 70, normalized size = 1.4 \begin{align*}{\frac{A\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+{\frac{B\tan \left ( dx+c \right ) }{d}}+{\frac{C\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{2\,d}}+{\frac{C\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)

[Out]

1/d*A*ln(sec(d*x+c)+tan(d*x+c))+B*tan(d*x+c)/d+1/2*C*sec(d*x+c)*tan(d*x+c)/d+1/2/d*C*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 0.935045, size = 101, normalized size = 1.98 \begin{align*} -\frac{C{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 4 \, A \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) - 4 \, B \tan \left (d x + c\right )}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

-1/4*(C*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 4*A*log(sec(d*
x + c) + tan(d*x + c)) - 4*B*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 0.500618, size = 220, normalized size = 4.31 \begin{align*} \frac{{\left (2 \, A + C\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left (2 \, A + C\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (2 \, B \cos \left (d x + c\right ) + C\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/4*((2*A + C)*cos(d*x + c)^2*log(sin(d*x + c) + 1) - (2*A + C)*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*(2*B
*cos(d*x + c) + C)*sin(d*x + c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (A + B \sec{\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x), x)

________________________________________________________________________________________

Giac [B]  time = 1.19608, size = 155, normalized size = 3.04 \begin{align*} \frac{{\left (2 \, A + C\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) -{\left (2 \, A + C\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) - \frac{2 \,{\left (2 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - C \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 2 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - C \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

1/2*((2*A + C)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - (2*A + C)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(2*B*tan(
1/2*d*x + 1/2*c)^3 - C*tan(1/2*d*x + 1/2*c)^3 - 2*B*tan(1/2*d*x + 1/2*c) - C*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*
x + 1/2*c)^2 - 1)^2)/d